
Windows Open Services Architecture (WOSA) CS-420 (ET & CIT)

 1

Windows Open Services Architecture (WOSA)

The Windows Open Services Architecture (WOSA) was developed by Microsoft to
"...provide a single, open-ended interface to enterprise computing environments." The
concept of WOSA is to design a way to access extended services from the Windows
operating system that require having only a minimum amount of information about the
services. For example, the MAPI (Message API) model is designed to allow programmers to
develop applications that use the message services without having to understand the
complexities of the hardware and software routines that implement messaging on various
Windows platforms.

The WOSA model goes beyond the idea of exposing services in a uniform way across
Windows operating systems. WOSA is also designed to work in a mixed operating system
environment. For example, the Microsoft Rpc (Remote Procedure Call) interface is a WOSA
service that is designed to work with the Open Software Foundation's DCE (Distributed
Computing Environment) Rpc model. The design of Microsoft Rpc allows programmers to
design software that will safely interface with any product that uses the DCE model,
regardless of the operating system with which the software must interact.

In order to attain this flexibility, the WOSA model defines two distinct interfaces-the Client
API and the Server SPI. These interfaces are linked by a single interface module that can talk
to both API and SPI applications. As a result, all client applications need to do is conform to
the API rules and then to the universal interface. All server applications need to do is
conform to the SPI rules and then to the universal interface. No matter what changes are
made to the client or server applications, both software modules (client and server) will be
compatible as long as they both continue to conform to the API/SPI model and use the
universal interface.

The WOSA Model
The WOSA model consists of three distinct pieces. Each of these pieces plays an important
and independent role in providing programming services to your applications. The three
WOSA components are:

• The Client API-the application programming interface used by the program
requesting the service.

• The Server SPI-the service provider interface used by the program that provides the
extended service (for example, e-mail, telephony, speech services, and so on).

• The API/SPI Interface-the single module that links the API and SPI calls. This is
usually implemented as a separate DLL in the Windows environment.

Figure-1: WOSA Model

The Client API

The DLL Interface

The Server SPI

Windows Open Services Architecture (WOSA) CS-420 (ET & CIT)

 2

Each of the components has an important job to do. Even though they perform their tasks
independently, the components work together to complete the service interface. This is the
key to the success of the WOSA model-distinct, independent roles that together provide the
whole interface.

The Client API Makes Requests
The Client API is the interface for the application requesting the service. API sets are usually
implemented at the Windows desktop. The Message API (MAPI) is a good example of a
WOSA client API. Each client API defines a stable set of routines for accessing services from
the back-end service provider. For example, the operations of logging into an e-mail server,
creating an e-mail message, addressing it, and sending it to another e-mail client are all
defined in the MAPI set. These services are requested by the client. The actual services are
provided by the server-side application.

The key point is that the client application interface allows programs to request services from
the server-side service provider but does not allow the client software to access the
underlying services directly. In fact, the request is not even sent directly to the server-side
application. It is sent to the DLL interface that sits between the API and SPI.

Figure-2: Communication between Client API & Server SPI

The Server SPI Responds to Requests
The Server SPI (Service Provider Interface) accepts requests for services and acts upon those
requests. The SPI is not designed to interface directly with a client application. Most SPI
programs are implemented on network servers or as independent services running on desktop
PCs. Users rarely interact with these service providers, except through the client API
requests.

Client only talks
directly to DLL

interface

Client can’t talk
directly to Server

Server Side

Client Side

The Client API

The DLL Interface

The Server SPI

Server only talks
directly to DLL

interface

Windows Open Services Architecture (WOSA) CS-420 (ET & CIT)

 3

A good example of an SPI implementation is the Open Database Connectivity (ODBC)
interface. Even though programmers use API calls (or some other method of requesting
ODBC services) in their programs, these calls merely request services from an external
program. For example, ODBC calls to Microsoft's SQL Server are simply requests to SQL
Server to perform certain database operations and to return the results to the client
application. When making an ODBC request to SQL Server, the client actually performs very
few (if any) database operations. It is SQL Server that performs the real database work.

As mentioned earlier, service providers rarely display interfaces directly to client
applications. Their job is to respond to requests. These requests do not even come directly
from the client program. In the WOSA model, all requests come directly from the interface
DLL. The SPI talks only to the interface DLL. Any information that the SPI needs to supply
as a part of the response to the request is sent directly to the interface DLL. It is the DLL's job
to send the information on to the client that made the initial request.

Another important point should be highlighted here. The service provider portion of the
WOSA model allows for multiple clients to request services. The DLL interface tells the SPI
which client is making the request. It is the SPI's responsibility to keep the various clients
straight. SPIs must have the ability to handle multiple requests from the same client and from
multiple clients.

The Interface DLL Talks to Both the API and SPI
Since a key design aspect of WOSA is the isolation of the client API and the server SPI, a
single interface between the two components is required. This single interface is usually
implemented as a Windows dynamic link library (DLL) that allows programs to link to
existing services at run-time instead of at compile time. The advantage of using DLLs is that
programs need not know everything about an interface at compile time. Thus, programmers
can upgrade DLL modules without having to recompile the applications that access the
interface.

The DLL works as broker for the requests of the client API and the responses of the server
SPI. The DLL does not actually perform any real services for the client and makes no
requests to the SPI.

Note
Actually, the interface DLL may request basic information from the SPI at
startup about the underlying SPI services, their availability, and other
information that may be needed to support requests from clients.

The interface DLL is the only application in the Windows environment that actually "speaks"
both API and SPI. It is the DLL's job to act as translator between the client and server
applications.

In the past (before WOSA), these DLLs were written as translators from the client API
directly to a specific back-end product. In other words, each DLL interface understood how
to talk to only one back-end version of the service. For example, early implementations of the
MAPI interface involved different DLLs for each type of MAPI service provider. If a
program needed to talk to a Microsoft MAPI service provider, the MAPI.DLL was used as an
interface between the client and server. However, if the program needed to talk to another

Windows Open Services Architecture (WOSA) CS-420 (ET & CIT)

 4

message server, another DLL had to be used to link the client request with the back-end
provider.

In the WOSA world, interface DLLs can speak to any service provider that understands the
SPI call set. This is an important concept. Now, a single interface DLL can be used for each
distinct service. This single DLL is capable of linking the client application with any vendor's
version of the service provider. This is possible because the service provider speaks SPI
rather than some proprietary interface language.

WOSA Services
Microsoft has been championing the WOSA model for several years and promotes three
types of WOSA services:

• Common Application Services
• Communication Services
• Vertical Market Services

Each type has its own purpose and its own core of services. The following sections describe
the WOSA service types and give examples of services currently available for each.

Common Application Services
Common Application Services allow applications to access services provided by more than
one vendor. This implementation of WOSA focuses on providing a uniform interface for all
Windows applications while allowing programmers and/or users to select the vendor that
provides the best service option for the requirement. In this way, Microsoft can encourage
multiple (even competing) vendors to provide their own versions of key service components
for the Windows operating system.

By defining a single set of APIs to access the service, all third-party vendors are assured
equal access to the Windows operating environments. Since the interface is stable, vendors
can concentrate on building service providers that expose the services that customers request
most often. These vendors can also be confident that, as Windows operating systems change
and evolve, the basic model for service access (the WOSA model) will not change.

The list of Common Application Services available for Windows operating systems is
constantly growing and changing. Here is a list of some of the services provided under the
WOSA model:

• License Service Application Program Interface (LSAPI) provides access to software
license management services.

• Messaging Application Program Interface (MAPI) provides access to e-mail and
other message services.

• Open Database Connectivity (ODBC) provides access to database services.
• Speech Application Program Interface (SAPI) provides access to speech and speech

recognition services.
• Telephony Application Program Interface (TAPI) provides access to telephone

services.

Communication Services
Communication Services provide access to network services. This set of WOSA services
focuses on gaining uniform access to the underlying network on which the Windows pc is

Windows Open Services Architecture (WOSA) CS-420 (ET & CIT)

 5

running. The Communications Services also provide uniform access to all the network
resources exposed by the underlying network. By defining a universal interface between the
pc and the network, Windows applications are able to interact with any network operating
system that conforms to the WOSA model.

The following list shows some examples of WOSA implementations of Communication
Services:

• Windows SNA Application Program Interface provides access to IBM SNA services.
• Windows Sockets provide access to network services across multiple protocols,

including TCP/IP, IPX/SPX and AppleTalk.
• Microsoft Rpc provides access to a common set of remote procedure call services. The

Microsoft Rpc set is compatible with the Open Software Foundation Distributed
Computing Environment (DCE) model.

 Vertical Market Services
The last category of WOSA services defined by Microsoft is Vertical Market Services. These
are sets of API/SPI calls that define an interface for commonly used resources in a particular
vertical market. By defining the interfaces in this way, Microsoft is able to work with
selected vertical markets (banking, health care, and so on) to develop a standard method for
providing the services and functions most commonly used by a market segment. In effect,
this allows users and programmers to invent Windows-based solutions for an entire market
segment without having to know the particular requirements of back-end service provider
applications.

As of this writing, Microsoft has defined two Vertical Market Services under the WOSA
umbrella:

• WOSA Extensions for Financial Services provide access to common services used in
the banking industry.

• WOSA Extensions for Real-Time Market Data provide access to live stock, bond, and
commodity tracking data for Windows applications.

Benefits of WOSA
There are several benefits for both users and programmers in the WOSA model. The three
key benefits worth mentioning here are

• Isolated Development
• Multi-vendor support
• Upgrade protection

 The next three sections describe the details of the benefits of the WOSA model as it relates
to both client and server programmers and application users.

Isolated Development
In one way or another, all WOSA benefits are a direct result of the model's ability to separate
the details of service providers from the application running on users' desktops. By keeping
the details of hardware and software interface locked away in the SPI-side, programmers can
concentrate on providing a consistent interface to the services, rather than concerning
themselves with the low-level coding needed to supply the actual services.

Windows Open Services Architecture (WOSA) CS-420 (ET & CIT)

 6

The isolation of services from user applications has several other benefits. With WOSA
services, developers can limit their investment in understanding the details of a service
technology, where appropriate. Those focused on developing client-side applications can
leave the details of server-side development to others. They can concentrate their efforts on
developing quality client-side software knowing that, as long as the service providers
maintain WOSA compatibility, the client software will be able to take advantage of new
services as they become available.

Of course, this works the same for developers of server-side software. They can concentrate
their efforts on providing the most efficient and effective means for exposing and supporting
requested services and leave the client interface details to others. Service provider developers
are assured equal access to all Windows clients because the WOSA model ensures that all
links to the services are the same, regardless of the client software used.

Multi-vendor Support
In addition to allowing programmers to focus on the client-side of the equation instead of the
server-side, WOSA implementations provide benefits to application programmers. With a
common interface for the service, application programmers can build software solutions that
are independent of vendor-specific implementations. The WOSA model allows programmers
to build programs that interact with any vendor's service implementation as long as that
vendor adheres to the WOSA model.

This is a key benefit for both client-side and provider-side developers. Now service provider
vendors can be assured that, as client-side applications change, the interface to their services
will remain the same. At the same time, client-side developers can be assured that as service
providers upgrade their software; client applications need not be rewritten except to take
advantage of new services. This feature allows client-side and service-side development to go
forward independently. The result is greater freedom to advance the technology on both sides
of the interface.

Upgrade Protection
Another benefit of WOSA-compliant systems is the protection it provides during service or
application upgrades or platform migrations. Users can more easily plan and implement
software and hardware upgrades when the service access to uniform calls is isolated to a
single DLL. Since the WOSA model ensures that service provision and access is standardized
across vendors and platforms, changing software and hardware has a minimal effect on users
who access services from WOSA-compliant applications.

Thus, when users decide to move their primary database services from an IBM VSAM
system to a DB2 or SQL Server environment, the client applications see minimal change as
long as the WOSA model was implemented for database access. This protects users' software
investment and allows greater flexibility when selecting client and server software.

At the same time, this approach provides protection for commercial software providers
because a single application can be designed to work with multiple service providers.
Developers can focus on creating full-featured applications without tying their software to a
single service provider. As the market grows and changes and service providers come and go,
client-side applications can remain the same when the WOSA model is used as the route for
service access.

Windows Open Services Architecture (WOSA) CS-420 (ET & CIT)

 7

Leveraging WOSA in Your Own Applications
Now that you understand the concepts behind the WOSA model, you can use this information
in your own development efforts. For example, when accessing WOSA services from your
client applications isolate those calls in your code. This will make it easier to modify and
enhance your application's WOSA interface in the future. As the services available change
and grow, you'll need only to make changes in a limited set of your code.

Also, when designing your application, plan for the future from the start. Assume that the
various program services will be provided via WOSA-compliant tools-even if they are not
currently available as true WOSA components. This approach will make it much easier to
add true WOSA components to your client application once they become available and will
increase the life and flexibility of your software.

The same holds true for back-end service provider developers. If there is a WOSA SPI
defined for the services you are providing, use it. This will make your software client-ready
for virtually all Windows desktops. If no WOSA interface is yet defined for your service,
code as if there is one. Limit the code that talks directly to hardware to a single area in your
program. If you are using vendor-specific calls, isolate these, too. This way, when a WOSA
model is defined for your service, you'll have an easier time converting your software to
comply with the WOSA model.

You can learn about the specific API calls that are used to access extension services. You can
see a consistent pattern throughout all three extensions. Each of the extension services is
divided into layers. The first layer provides a simple interface-sometimes as simple as a
single function call-to the target service. The second level provides a more extensive access
to a complete feature set. Finally, you'll find a third level of service that allows sophisticated
programmers access to all the nifty little details of the extension service. When you're coding
your own applications, it is a good idea to use this same approach. Where possible, give users
a single function or subroutine that provides access to the extension service. For more
advanced applications, create a function library or class object that encapsulates all the
extension service calls. By doing this, you'll make it easier to make modifications to your
program logic without touching the extension routines. It will also be easier to update the
extension routines in the future without damaging your local program logic.

